Question Number	Answer		Mark
1()		(1)	
I(a)	Correct conversion of lb to kg	(1)	
	Use of $W = mg$ with $g/6$	(1)	
	$W_{\rm moon} = 26 \ { m N}$	(1)	
	Example of calculation		
	$\overline{35 \text{ lb}} = 35 \text{ lb} \times 0.45 = 15.75 \text{ kg}$		
	$g_{\text{moon}} = 9.81 \text{N kg}^{-1}/6 = 1.635 \text{ N kg}^{-1}$		
	$W_{\rm moon} = 15.75 \text{ kg} \times 1.635 \text{ N kg}^{-1}$		
	$W_{\rm moon} = 25.8 \ { m N}$		3
1(b)	Divide by six	(1)	
			1
1(c)	Spring used on Earth has to be stiffer Or have a greater spring/stiffness		
	constant	(1)	
	(Accept converse for the spring on the moon)		
	To since the same antension for (the same mean)	(1)	
	10 give the same extension for (the same mass)	(1)	2
	Total for Ouestion		6

Question	Answer		Mark
Number			
2(a)	Use of $g = \frac{GM}{r^2}$	(1)	
	$M = 4.5 \times 10^{23} \text{ kg}$	(1)	
	Example of calculation		
	$M = \frac{gr^2}{G} = \frac{9.81 \mathrm{N}\mathrm{kg}^{-1} \times (1.74 \times 10^6 \mathrm{m})^2}{6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2 \mathrm{kg}^{-2}} = 4.45 \times 10^{23} \mathrm{kg}$		2
2(b)	(the gravitational force on the Moon would be larger), but the centripetal acceleration would be independent of the mass of the Moon Or		
	$r\omega^2 = \frac{GM}{r^2}$ $\therefore \omega^2 = \frac{GM}{r^3}$	(1)	
	(angular) velocity and hence T is independent of mass of Moon	(1)	2
2(c)	Gravitational forces on the seas/oceans/Earth would be greater	(1)	
	Or		
	Tidal variations would be more extreme		
	[accept tides would be bigger, higher, larger, faster; do not accept tides		
	would be stronger]		1
	Total for Question		5

Question	Answer	Mark
Number		
3(a)(1)	Use of $\omega = \frac{2\pi}{T}$ (1)	
	See $F = \frac{GMm}{r^2}$ and $F = m\omega^2 r$ (1)	
	$GM = 4.07 \times 10^{14} (\text{m}^3 \text{s}^{-2}) \tag{1}$	
	Or	
	Use of $v = \frac{2\pi r}{T}$ (1)	
	See $F = \frac{GMm}{r^2}$ and $F = \frac{mv^2}{r}$ (1)	
	$GM = 4.07 \times 10^{14} (\text{m}^3 \text{s}^{-2}) \tag{1}$	3
	[If reverse "show that" attempted, max 2]	
	Example of calculation: $\omega = \frac{2\pi}{T} = \frac{2\pi \operatorname{rad}}{2.36 \times 10^6 \operatorname{s}} = 2.66 \times 10^{-6} \operatorname{rad s}^{-1}$	
	$\frac{GMm}{r^2} = m\omega^2 r$	
	$GM = \omega^2 r^3 = (2.66 \times 10^{-6} \mathrm{s}^{-1})^2 \times (3.86 \times 10^8 \mathrm{m})^3 = 4.07 \times 10^{14} \mathrm{m}^3 \mathrm{s}^{-2}$	
3(a)(ii)	Use of $g = \frac{GM}{R^2}$ with $g = 9.81 \text{ N kg}^{-1}$ (1)	
	$R = 6.4 \times 10^6 \text{ m [} 6.5 \times 10^6 \text{ m if show that value used]} $ (1)	2
	Example of calculation: $R = \sqrt{\frac{GM}{g}} = \sqrt{\frac{4.07 \times 10^{14} \mathrm{m}^3 \mathrm{s}^{-2}}{9.81 \mathrm{N kg}^{-1}}} = 6.44 \times 10^6 \mathrm{m}$	

3(b)	Force varies with distance (from the Earth) according to inverse square law		
	$F \propto \frac{1}{r^2}$	(1)	
	so force (on these asteroids) is (very) small	(1)	
	Or		
	Gravitational field strength varies with distance (from the Earth) according to		
	inverse square law $g \propto \frac{1}{r^2}$	(1)	
	so gravitational field strength is (very) weak at this distance	(1)	2
	[Accept idea that since the asteroids are much further from the Earth (than		
	the moon) they are only weakly bound (to the Earth) for max 1 mark]		
	Total for Question		7

Question Number	Answer		Mark
4	Use of $E = \frac{Gm_1m_2}{m_1m_2}$ (1)	.)	
	$\frac{686}{F} = 8.2 \times 10^{16} \mathrm{N} $ (1)	.)	2
	Example of calculation:		
	$F = \frac{Gm_1m_2}{r^2} = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 6.4 \times 10^{23} \text{ kg} \times 6.0 \times 10^{24} \text{ kg}}{(5.6 \times 10^{10} \text{ m})^2}$		
	$F = 8.17 \times 10^{16} \text{ N}$		
			2

Question	Answer	Mark
Number		
5 (a)	See $F = mg$ and $F = (-)GmM/r^2$ (1)	
	Equate and cancel m on either side (1)	2
	$C_{\rm ext} = \frac{C_{\rm ext}}{C_{\rm ext}} = C_$	4
5(0)	Substitute into $g = GM/r$ to obtain $g = 9.78$ N kg [condone m s] (1)	
	Example of calculation	
	GM 6.67 × 10 ⁻¹¹ N m ² kg ⁻² × 5.97 × 10 ²⁴ kg	
	$g = \frac{1}{r^2} = \frac{1}{(6.38 \times 10^6 \text{ m})^2} = 9.783 \text{ N kg}^2$	
	Total for question	3

Question Number	Answer		Mark
6(a)	The gravitational field strength [accept "g"] decreases Or the (gravitational) force on the satellite/object/mass decreases It is a centripetal force (and not a centrifugal force) The satellite is accelerating and so is not in balance	(1) (1) (1)	3
6(b)(i)	See $\frac{mv^2}{r} = \frac{GmM_E}{r^2}$ Or $m\omega^2 r = \frac{GMm}{r^2}$	(1)	
	$\therefore v^2 = \frac{GM_E}{r} \qquad \text{Or} \qquad v = \sqrt{\frac{GM_E}{r}}$	(1)	
	GM_E is constant (and so v decreases as r increases)		
	Or $v^2 \propto \frac{1}{r}$ Or $v \propto \frac{1}{\sqrt{r}}$	(1)	3
6(b)(ii)	State $T = \frac{2\pi}{\omega}$ and $\omega = \frac{v}{r}$ Or $T = \frac{s}{v}$ and $s = 2\pi r$	(1)	
	Hence T = $\frac{2\pi r}{v}$ (so smaller v leads to a larger value of T)	(1)	2
	[Accept $T = \frac{2\pi GM_{\rm E}}{v^3}$ for final mark]		
6(c)	Use of $T = \sqrt{\frac{4\pi^2 r^3}{GM}}$	(1)	
	T = 5530 s [92 minutes]	(1)	2
	Example of calculation		
	$T = \sqrt{\frac{4\pi^2 r^3}{GM}} = \sqrt{\frac{4\pi^2 (6360000 \mathrm{m} + 400000 \mathrm{m})^3}{6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2} \times 5.98 \times 10^{24} \mathrm{kg}}} = 5530 \mathrm{s}$		
6(d)	Max 2 As radius decreases:		
	There is a transfer of gravitational potential energy to kinetic energy [Accept kinetic energy increases and gravitational potential energy decreases]	(1)	
	Sum of kinetic and gravitational potential energy decreases Or satellite does work against frictional forces Or transfer of kinetic energy of satellite to thermal energy Or heating occurs	(1)	2
	Total for question		12